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Properties of layer-by-layer vector stochastic models of force fluctuations in granular materials
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We attempt to describe the stress distributions of granular packings using lattice-based layer-by-layer sto-
chastic models that satisfy the constraints of force and torque balance and nontensile forces at each site. The
inherent asymmetry in the layer-by-layer approach appears to lead to an asymmetric force distribution, in
disagreement with both experiments and general symmetry considerations. The vertical force component
probability distribution is robust and in agreement with predictions of the sqatawdel of Liuet al. [Science
269 513(1995] and Coppersmitket al. [Phys. Rev. E53, 4673(1996] while the distribution of horizontal
force components is qualitatively different and depends on the details of implementation.
[S1063-651%99)13505-(

PACS numbds): 45.70.Cc, 46.65:g

I. INTRODUCTION sion effects, processes that are important in understanding
failure, are not possible with this model. Moreover, though
Gaining an understanding of the inhomogeneous stregéie g model successfully describes the stress fluctuations in
distribution in a granular packing is important both becausesimple geometries where the large-scale stresses are spatially
of the insight it may yield into failure mechanisms and as aconstant, if applied to situations where stress varies over
first step towards elucidating the dynamics of such systemng scales, it predicts that these variations should obey a
[3-14). Although qualitative aspects of the inhomogeneitiesdiffusion equation, in disagreement with experimgmtL1]. .
have been known for some tinfd,3,15-20, quantitative These shortcc_;mmg_s have led seyeral groups to examine
experiments have been performed only recently for cyIindri-StreSS fluctuations in models that incorporate vector forces
cal packings of glass beafial], 2D arrangements of optical [28-32.

fers[16, and shear cels of las sphefed]. These ex. 118 0eneralzaton of e scalgmode) o vector orces
periments, together with numerical simulatioh23—-25, P P 9

have vielded new insight into the nature of stress inhomo e@bout locally averaged quantities calculated using continuum
vey . gr S 9heories. Claudiret al. [12] have investigated the connection
neities. Various properties of the stress distributions are co

. ) "between the lattice-basedmodel and the “light-cone” con-
sistently observed both in twot16,23,23 and three- i, ,m equations of Bouchauat al. [9] by examining con-

dimensional[1,21,24 systems. One such feature is that i, ,ym equations with randomness. This connection is not
P(f), the probability of observing a fordedecays exponen- triyia|. In addition to subtleties encountered when one takes
tially with f for forces much larger than the mefh21,23.  the continuum limit of stochastic models, Claudinal. ex-

A statistical model for a single component of stress in apose an important complication that arises when significant
packing based on a layer-by-layer approach appears to capandomness is introduced into their continuum equations—
ture some features of the observed fluctuatidng]. In this  the occurrence of tensile forces. They interpret this result,
model, the disorder in the system leading to the creation ofjuite reasonably, as indicating that the granular material
force chains, whether from the inhomogeneities in the packmust rearrange. However, the materials should eventually
ing itself, variations in the size of the particles, or differencesreach a state at which the load should be supported and all
in material properties, is encapsulated in a set of randonthe forces nontensile. It is unclear how to describe this state
variables labeledy;; which determine the fraction of the using their approach. Generalization of the lattice-based
stress component that is transferred from an elemefithe  models provides another means of approaching the issue.
packing to a neighboring element In [1] and [2], these Describing the system using random variables subject to
fractions are chosen randomly from probability distributionsthe constraints of force balance at each site and no tensile
consistent with the constraint of force balance with the asforces provides a mechanism by which more realistic vector
sumption that the's at different sites are uncorrelated. Cor- models may be based. Vector models in this spirit have been
relatedq models have also been investiga{@$,27. The proposed by Eloy and Oteent[28] and Socolaf29]. Com-
layer-by-layer structure enables analytic progress on characaon to the proposals is the propagation of forces downward
terizing the force distributions. The predicted exponential dein the packing in a layer-by-layer fashion starting at a load
cay in the probability distribution for large values of the applied at its top.
stress component is in qualitative agreement with experimen- In this paper we present our attempts to construct a layer-
tal and simulation results. by-layer vector force model. We find that serious fundamen-

The g model is scalar: it ignores the contributions thattal problems arise from attempts to describe vector force
balancing the remaining stress components and torque mdluctuations using simple generalizations of thenodel. In
have in determining the weight redistribution and yields noparticular, we find that it is very difficult to construct a sto-
information on their probability distributions. Investigation chastic model that leads to isotropic force fluctuations and
of correlations between fluctuations of shear and of compressatisfies the constraints of force and torque balance with non-
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tensile forces. By symmetry, isotropy of these fluctuations is *
expected when a system is both prepared and compressed

isotropically; moreover, Muetlet al. [21] demonstrate ex- .
perimentally that subjecting a granular system to a load leads

to a stress fluctuation distribution that appears to be isotro- .
pic. The difficulty arises because of the inherent asymmetry
in the formulation of a layer-by-layer vector model. At the
individual site level, we see the possibility of the creation of
large-magnitude horizontal output forces that are indepen-
dent of the input forces and torque. The layer-by-layer struc-
ture does not allow for an intrinsic mechanism of removal,
leading the most natural formulations of the model to have
horizontal forces that appear to grow without bound as the
system depth is increased. Incorporating cutoffs on the force
magnitudes appears necessary to achieve any set of reason-
able force redistributions. We find the probability distribu-
tions of vertical forces are insensitive to the cutoffs while the
probability distributions of horizontal forces are dependent
on their form. Thus, these cutoffs do not appear to present a
solution to the underlying pathology of the model.

The paper is organized as follows. Section Il defines the
model we investigate. We consider the redistribution of
forces at a single site and discuss the difficulties that may be
seen even at this level. Section Il describes the process of FIG. 1. A triangular lattice is used to approximate a 2D granular
redistributing forces through a lattice including our strategiesacking in order to assign depth in site and neighboring sites. Lines
for limiting the magnitudes of the forces generated by theconnecting sites indicate that a transfer of force occurs between
redistribution algorithm. Section 1V reports the results of thethem. Sites on the same layer are not connected. iSjtei¢ labeled
statistics of the forces obtained for various choices of thealong with its neighboring sites.
coefficient of friction w and force cutoffs, illustrating the
inherent asymmetry and cutoff dependence. Section V cOM- \ye have chosen to parameterize the redistribution of
pares the results to experiment. Appendix A describes methy ces at a site by randomly chosen contact angles and effec-
ods used to increase the efficiency of generating force redigye friction coefficients. Figure 2 shows a schematic of the
tributions. Appendix B discusses exactly solvable four-sit€, ceg acting on a site. The contact angfes determine the
lattice configurations used to gain insight into strategies thakirection of the output normal forcés , to the left and right

i+1

i+2

could be used to construct isotropic models. neighbors, respectively, and are chosen from the interval
(0,7/2). The effective friction coefficients, . determine the
Il. MODEL direction and magnitude of the output tangential forces and

A. Force balance at a site

Flin Fin

As in the scalar version of thg model[1,2], we assume
that the essential features of the disorder in a granular pack-
ing can be described using random variables. The choice of
these variables is constrained by the requirements of satisfy-
ing force and torque balance as well as the requirement that
the forces be nontensile. We describe below the specific rep-
resentation of random variables that we have employed. For
the model to be considered useful, the probability distribu-
tions of vertical and horizontal force components should not
be sensitive to the details of these choices.

In our implementation of a layer-by-layer vector model
we assume the topology of the packing is that of a modified
regular two-dimensional triangular lattice of discs, as shown Fz F
in Fig. 1. Forces are introduced at the top of the lattice and

are propagated downwards with “input” forces at a site aris- 5 5 gchematic of forces at a site for the vector model. Input
ing from the two neighbors in the layer above and the resulttoces are from the neighboring sites above and output forces are
ing “output” forces being passed on to the two neighborsgom the sites below. The frictional forces have magnitude equal to
below. Sites on the same layer do not transfer force betweeﬂ,r=w7|,r|:|,r. whereF, , is the normal force, and are shown in
one another. In an arbitrafy row by M column lattice, the  the + 4 direction. The angles, , indicate the contact angle be-
jth site in theith layer transmits its leftward output to the tween the site and the output neighbors. The parametersand

site j—1(j) on thei+1 layer and its rightward t¢(j +1) 7, are chosen randomly, consistent with the constraints of force
for odd (even i. and torque balance, nontensile forces, pimd|<1.
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FIG. 3. Slices of configuration space of contact angbes and effective friction coefficienty, . The maximum coefficient of static
friction u has been set to 1 to exaggerate the features. A sample of 10 000 points were randomly chosen with uniform probability in the
interval[ 0,77/2] X[ 0,7/2]. Points that satisfied the nontensile and frictional constraints, (Bgsare shown. Boundaries of the valid region
are labeled. The=0 boundary where large horizontal forces are generated is foung, f80 but not for»,>0.

are chosen from the intervat1,1]. The magnitude of the 7, (or vice versa The number of independently chosen ran-
tangential forcefy (d=I,r) varies from[0|unqF4/] with  dom variables is reduced to three.

u being the coefficient of static friction. Positive values of  Solving for the output normal forces yields:

nq have tangential forcéy contributing to the balancing of
the vertical force component at a site in conjunction with its
paired normaF 4, while negative values have the tangential
force in opposition to the paired normal. The tangential in . .
forces contribute to the torquéR at a site and are assumed —Fy[cose,+un (sing—sine,)]

to occur at the same distanBefrom its center of mass. The +Tcod ¢+ @) — my, si(e+ )1}, (38)
constraints imposed by force and torque balance and the non-

T .
Fi= {FX[sing, + ur (cose +cose,)]

tensile force requirement will place further restrictions on the 1 . _ _
allowed range of the random variables. Fr=g [~ FXsing —Fy cose +1™], (3b)
In any stationary packing, the individual sites must satisfy
force and torque balance: where
Fr'=—F(cosg,— un sing|) +F (Cose, — w7, Sin(Pr()va) W=—un[l+cogq+¢)]—sin(e+¢). (4)
1
The asymmetry between the formskfandF, is due to the
|:';: Fi(sing,— un sing)) +F|(Sing, — un, Sing,), choice of demgn_atmg;,_as a rand(_)m statlstl_ca_l variable.
(1b) The force redistribution is considered valid if, for the val-
ues ofe, , and 7, chosen,
in_ _
0= uCmFi=mF), (10 F,,=0 (nontensile constraint (5a)
where the total input force components and torque are given <1 (Newtonian frictio 5b
by the sum of the normal and frictional forces from neigh- [ ( ! iction. (5b)
boring sites in the layer above: Figure 3 shows the valid region of contact angle-effective
- - o friction coefficient configuration space for a vertical input
Fx=(F)x+(F)x, (28  force with positive and negative values gf. The formal-
_ _ _ ism for choosingn, as a random variable instead of is
Fy=(F")y+(F"y, (2b)  similar.
rin:F:n+Fin (20) B. Difficulties arising at a site
.

Even at the single-site level, we may encounter difficul-
Only the total input force and torque enter into E¢. as  ties in the redistribution and propagation of forces. One pos-
these are fixed values arising from the propagation of forcesibility is that the input forces and torque may be such that
in the previous layer. Because of torque balance, (B, no valid redistribution can occur. Although the force and
the 7’s are not independents; may be written in terms of torque balance equations always yield solutions for the in-
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puts in any randomly chosen configuration of angles and @Q=145°

friction, the additional nontensile and frictional constraints

may severely limit the number that may be realized. Typi-

cally, we see that the configuration space is significantly re-

duced if the net input force is largely horizontal or if the

input torque is large relative to the input normal and fric-

tional forces. $=266"
A more serious difficulty arises because large magnitude

output forces can be generated irrespective of the magnitude

of the input force. To illustrate this problem, we write the

force balance at a site, given by E@$), schematically as

i 149
F'=M(e, ¢, nr)Fgg}mal ) (6) P=14
which has the solution
Fgg';mal =M _lFin' (7)

FIG. 4. Even for a site with a purely vertical input force in the
absence of friction, the output forces must increase significantly in
magnitude as both output angles approach the horizontal. Because

VT =detM. 8 the horizontal force components in the outputs are in opposition to
each other, they may grow without bound while the vertical com-
As F, roc\[f*{ large magnitude normal forces will be gener- ponents are limited in magnitude by the input. We see this growth
ated whenevel approaches zerol depends only on the from a small magnitude to a large magnitude for the same vertical
choice of random variables and is independent of the inpuftPut force. Values of¥” from Eq. (4) for each case art 5=
force - 1, q,26.6°: - 08, and\I’14c= - 047

Exactly at the? =0 boundary, the output forces sum vec-

The factor¥ from Eq. (4) is the determinant of the matrix
M:

torially to zero—no force balance is possible. This boundary lll. METHODS
occurs at values op, , and 7, <0 satisfying A. Force redistribution through a lattice
1—(u7,)? Our algorithm for generating large lattices redistributes
cog ¢t @)= > 9 the forces at individual sites starting from a normally distrib-
1+ () uted vertical load applied on the top layer of sites and pro-

N ceeding downward into the lattice layer by layer. All sites on
The boundary can be clearly seen in Fig)3Although the o "\5v0" are processed before proceeding to the next layer

boundary itself does not yield solutions, regions of configu—down_ Contact angles, , and an effective friction coeffi-

ration space exist near it that do yield valid solutions forcient, eithers, or »,, at a site are randomly chosen within

which [¥| is very small. In these regions the output forcefstheir respective intervals using a uniform deviate and a test is

alr(?OSt canc_el, requmngl_Large magc?lt_udef normal forc_:es "made to determine whether the resulting force redistribution
order to satisfy any equilibrium condition for nonzero iNPut ¢sicies the necessary nontensile and frictional constraints. If

values. Beqause Fhe ir_1put force is designated as originatin[g]e constraints are not met, new sets of random variables for
from the neighboring sites from the layer above, an asyMMene site are chosen until all requirements are satisfied.

try ?XiStS between vertical and horizontal components. The Failure in lattice generation occurs when the input forces
vertical components of the output forces are bounded Mnd torque at a site cannot be redistributed within a reason-

magnitude by the fixed vertical component of the input Whlleable sampling of the contact angles-effective friction coeffi-

the horizontal components of the leftward and rightward out-jo .+ configuration space. Reasonable has been defined as a

EUIS 303”%1'.” o?fposmon to glackf; other are hessent;a}lly un'ampling of 25 000 uniformly distributed points in the space.
ounded. This effect can easily be seen In the nonfrictional |, 0er sampling size did not increase the lattice yield sig-

case for a purely vertical input force: as shown in Fig. 4, aS,iicantly. Furthermore, some input force configurations do
the angle of both output forces approach the horizontal, th ot have any valid redistributions. In our simulation, if no

magnitude of those forces must increase so that their vertlp alid redistribution for a site is found, lattice generation is

c_orr_1ponents will balang:_e the input. 'I_'he frictional Case ISiarminated and restarted with another random number seed.
similar, though the addition of tangential forces complicatesyhiie encountered mainly when friction has been applied,

the picture slightly. we find that nonfrictional cases ma [
. y also suffer from this
The vector model proposed by Eloy and @ient [28] behavior. The rate of failure increases with lattice size and

also suffers from this pathology although the meChanisnl:oefficient of static frictionu. However, techniques de-

may not be as obvious due to their choice of parameteriza,s—)Cribed in Appendix A can be used to increase the vield
tion. Socolar's mode]29] requires the forces to lie in a 45° PP yield.

cone about the vertical and, therefore, only considers non-
negative values of frictiofas interpreted by our modelAs

a result, it does not generate these large forces but at the cost As discussed above, large horizontal forces can be gener-
of imposing severe limits on the magnitude of horizontalated at a single site. However, we consider the possibility
components. We discuss this issue in more detail below. that the lattice structure may be self-limiting so that the ef-

B. Implementation of limits on force magnitude
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fect of large magnitude horizontal forces will be restricted togeneration grew significantly with increased vertical size de-
small neighborhoods surrounding the generating site. Onspite the measures taken to increase overall yield described
possible mechanism would be the cancellation occurring at & Appendix A. However, as convergence of the distributions
site with left and right input neighbors both contributing this proves to be fairly rapid, larger lattices are unnecessary.
type of force. However, as shown below, we find that the Data sets with static coefficients of frictiop=0, w
generation of a cancellation pair is unlikely enough that these=0.1, andx=0.2 under various cutoff schemes are used.
large forces build up and propagate in our lattices. Configurations forw =0 andu=0.2 are also generated with-
Having failed to identify an intrinsic means to limit the out an applied force cutoff in order to demonstrate the ne-
production and transmission of large magnitude horizontatessity of cutoff implementation. In setting the sharp force
forces, we impose various cutoff schemes to attempt to gereutoff, upper limits of 50 N and 100 N are set on the normal
erate sets of realistic force distributions. The choice of ondorces. Angle cutoffs are implemented for a range about 60°
form of implementation over another is somewhat arbitraryto simulate a triangular packing. For the soft cutoff, Ed),
Consequently, several cutoff schemes have been impleve use the values based on the physical properties of soda
mented to observe the influence they exert on the resultinfime-silica float glass ¢=0.23, E=7.2x10' Pa) assum-
force distributions. ing a radiusR of 1.75 mm, yielding A(o,E,R)=1.5
The first cutoff scheme we implement is the simplest: thex10~7 J N~52for Eq.(10). Total input energies of 1 and 5
magnitude of each normal force at a site may not exceed @ are considered, leading td,=5x10"° J andU,=2.5
specified value. The second scheme is to limit the allowedk 10 J, respectively.
angles to prevent exploration of thE=0 boundary. This
method is similar to the Eloy and Gfeent mode[28] which IV. RESULTS
has fixed angles. By restricting the range of available angles,
this type of limit serves to reduce the volume of configura- We find the probability distributiorP(v) of normalized
tion space available for redistribution and can exclude revertical forcess shows remarkable robustness and appears to
gions that form large magnitude horizontal forces. Our thirdoe independent of the coefficient of frictipnand of choices
scheme is a soft cutoff scheme based on the assumption of large force cutoff. In contrast, the probability distribution
contact energies between sites following a Boltzmann-likeP(h) of normalized horizontal forcels exhibits changes in
distribution. This choice is clearly arbitrary as the system isfunctional form with variation in bothu and with cutoff
not thermal. For simplicity, the lattice is modeled as a layerchoice. Horizontal forces, in general, are of larger magnitude
of spheres whose centers lie on the same planatact to- than vertical forces.
pology is therefore equivalent to digcand elastic theory Convergence of the probability distributions of normal-
[33] is used to calculate the enerdy within the contacts ized vertical force component is fairly rapid, on the order

between these spheres: of 10 rows.P(v) versus depth in lattice is shown in Figab
5/ for a nonfrictional, sharp cutoff limit configuration. Similar
U=A(c,E,R)F>, (100 results forP(v) are seen for all generated configurations

. . . ith little variation in functional form; the distributions at
whereF is the normal force between the sites in contact an ow 100 are shown in Fig.(6) with the symbol key for the

A'is a function of the material propertigBoisson’s ratior  yarious configurations shown in Table I. An exponential tail
and Young's modulus€) and radiusR of the spheres. We ¢4, p(,) is seen for larger values of and a “dip” in P(v)

assume that the prqbabjlity tha}t a contact has an energy is seen for small values af. The observedP(v) is very
follows an exponential distribution, similar to that obtained from the scalgmodel with uniform
g distribution for anN=2 (two-dimensional system[2],

1
P(U)=—e Yo, 11
V=g, (0 P(v)=4v2e 2. (12)

whereU, is is an arbitrarily assigned average contact ENC"WThe distributions ofy values describing the redistribution of

, the vertical forces, shown in Fig. 6, are nearly uniform with
C. Generation of datasets a slight increase in probability near values of 0 and 1 as
For each coefficient of frictionx and force cutoff con- compared to 0.5 fou=0 and a decrease when>0. In
figuration a set of 1000 horizontally periodic lattices of 100addition, configurations withs>0 in the vector model do
rows by 100 columns with an applied load of 1000(tke  allow for g values outside the randé,1] due to mostly
unit is arbitrarily applied for the benefit of the applied limits horizontal normal forces with a corresponding 0. The net
is generated and averaged over to yield the probability disvertical component of the input force at a site is still kept
tributions of vertical and horizontal force components. Thepositive. For theu#0 configurations examined, roughly
load is distributed on the top layer via a normal distribution5—20% of theq values are found to lie outside the range
centered about the average force of 10 N with a standarp0,1], with a smaller fraction found in more restrictive force
deviation of 5 N. Normalization of both the vertical and hori- cutoff configurations and a larger fraction for less restrictive
zontal force components is performed relative to the averageutoffs. Nonfrictional +=0) configurations all have val-
vertical force(10 N) imposed on a site by the load on the ues lying in the rangg0,1].
system. The lattice size is chosen to minimize computational In contrast to the vertical force distributioR(v), the
time as the failure raténumber of lattices that failed to run probability distributionP(h) of normalized horizontal force
to completion divided by number of lattices stat@tlattice ~ component shows great variation in form with changes in
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FIG. 5. (a) Probability distributionP(v) of normalized vertical force at increasing depths of a nonfrictional € 0) lattice. Force limit
has been arbitrarily set to 100 (Mnnormalized for normal forces. Convergence occurs fairly rapidhithin ~10 layers. Similar results
are seen for other values pfand force cutoff configurationgb) Probability distributiond®(v) for normalized vertical force at depth 100
for various values ofx and force cutoff configurations. The symbols are defined in Table I. Functional form of the distributions is invariant
with respect to configuration. The force distributions are very similar to that of the spaladel withN= 2, shown as the solid line, which
is appropriate for this geometf2].

the imposed force limit. We first examine tigh) distribu- 0.10
tions for lattice sets with no imposed force cutoff apd
=0 anduw=0.2, shown in Fig. 7. We see the distributions
spreading toward larger values bfas we progress deeper
into the lattice whileP(v) remains bounded and robust.
Whenp =0, P(h) converges, but at values of the horizontal
force much greater than the vertical force, as seen in Fig.
7(a). We find that this convergence is mainly due to a de-
crease in the number of valid solutions of force and torque
balance, Eqs(1), that satisfy the nontensile and frictional
constraints given by Eq$5) as the ratio of input force com-
ponentsF/ FU‘ grows larger. Although this process appears
to provide an intrinsic limit on forces, it results in physically
unreasonable values of force and fails altogether to limit the
magnitude of horizontal forces when>0. The addition of
friction greatly enhances the anisotropy—the generation of
large horizontal forces in configurations without friction only q;

occurs at nearly horizontal values @f , , while the addition

of friction allows for the generation to occur for a larger  FIG. 6. Histogram ofg, values describing the redistribution of
region of angles. More precisely, the=0 boundary foru the vertical component of force for various valuesofand force

Various Configurations at Row 100.

0.08

0.06

N(q,)

=0 occurs only at cutoff configurations at a depth of 100 rows, denoting the fraction
of weight supported by the leftward neighbor of a site. Symbols

@+ ¢,=0, (13 used are the same as for Figbp(defined in Table)l except only

the larger, less restrictive cutoff values are u&dtarp cutoff at 100

while it varies foru=0.2 according to N and soft cutoff with 5 )1 Bin sizeAq is 0.04 and the result is

placed at the right edge of the bin. The distribution is nearly uni-
TABLE I. Symbol key for Figs. &), 6, and 8b), which are  form except for a slight increase in probability near values of 0 and
plots consisting of various configurations of coefficient of static1 as compared to 0.5. for nonfrictional configurations and a slight

friction x values and force cutoff schemes. decrease when friction is present. Because of the admission of fric-
tion in the vector modelg values outside of the rand®,1] are
Sharp Cutoff Soft Cutoft possible as frictional forces may cause a contact to have an upward
50N 100 N 1J 51 net force. Roughly 5-20% af's in uw# 0 configurations are found
p=0 o ® ® ® to lie outside the rangi0,1] with a smaller number found for more
h=01 O restrictive force cutoff configurations and a larger number for less
o2 A N A restrictive cutoffs. Nonfrictional £=0) configurations all have

values lying in the rangg0,1].
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FIG. 7. Results for lattices without imposed force cutoff. We see that the probability distriR{tonfor normalized horizontal forces

h broadens and shifts toward larger value$aiith depth whileP(v) for normalized vertical forces remains unchanged. The distribution

P(h) in the nonfrictional {+=0) case appears to converge after about 100 layers, reaching an upper lihit(ef) ~5.5, as shown in the

inset. The distribution does not widen any further—for IaFd;{éFiy“ ratios at individual sites, no valid solutions of force and torque balance,

Egs. (1), under the constraint of nontensile forces, Esp), exist. Although this appears to be an intrinsic limit, it results in physically
unreasonable values of force and is far less effective whetd. Results shown irfb) demonstrate that the addition of friction greatly
enhances the anisotropy. Lattice generation with friction present was limited to five rows due to an increased rate of failure. Deeper lattices
are possible; however, the number of points sampled in configuration space increases significantly.

which is unlikely to be realized in a physical packing. The
use of angle cutoffs was unsatisfactory as lattice generation

0=< @+ ¢, <22.6°. (14)

The rapid growth in the magnitude bfvalues prevents the for this scheme was consistently terminated due to angles
generation of large frictional lattices without imposed forcebeing driven to the cutoff values due to our choice of param-
cutoffs to take place in a reasonable amount of time. When aterization and random value selection. Configurations ob-
sharp cutoff in the normal force is imposed, the probabilitytained using the soft cutoff from E¢L1), shown in Fig. &),
exhibit differing functional forms for the probability distri-

distribution P(h), as seen in Fig. @ cuts off abruptly,

109 T T T 109 T T T T T
n= 0-1 Sharp Cutoff at 100 N. Various Configurations at Row 100.
' At Row 100
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O 20 |
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(b)

FIG. 8. (a) Probability distributionP(h) of normalized horizontal forcé at increasing depths for a nonfrictionak € 0) lattice. The
normalization factor used is the same as for the vertical component of force. Force limit has been arbitrarily set tarit@riNalized for
normal forces and the distribution terminates abruptly iead0 (100 N). The distribution has not converged and appears to be widening,
indicating the average horizontal force is increasing with depth. The functional form is unlike the vertical and is on a larger scale, as can be
seen in the inseib) Probability distributionP(h) at depth 100 for various values pf and force cutoff configurations. Symbols used are
the same as for Fig.(B) (defined in Table )l Functional form varies with the imposed limits. Whi{h) curves for the sharp cutoff
terminate ah=5 andh=10, those for the soft cutoff Boltzmann-like limits do not.
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(a) q label (b) Vector model: vertical force componet ~ (c) Vector model: horizontal force component

FIG. 9. Grayscale plots of representative 100 by 100 lattices fogtimedel with uniformq distribution and the vector model with
=0.2 and a sharp cutoff of 100 N for normal forces. A load of 1000 N has been applied at the top of the lattices. The darkness or brightness
of a site corresponds to the magnitude of the normalized force component. Normalized force components with magnitudes greater than 5
have been clipped at 5. Both the vertical and horizontal force components are normalized by the same value. The qualitative difference
between the two components for the vector model are readily apparent; the horizontal fluctuations are of a much larger scale and form
“V"-shaped chains reminiscent of light cones, while the vertical fluctuations resemble those foundgmtbeel.

bution as the cutoff is changed, with broadening occurring aability distribution of horizontal force components is natu-

the tail with increased input energy. For small valueshof rally skewed toward larger values. In contrast, large vertical
the distribution appears to be unaffected by changes in thfarces are not generated. The imposition of limits on the
choice of cutoff. Increasing. serves to broaden the distri- vertical forces by the applied load and the nontensile force
bution P(h). As force components are normalized by theconstraint is sufficient to limit the magnitude of that force

same factor, it can be readily seen that the scale of horizontgbmponent. The horizontal component has no similar con-
forces is larger than the vertical as shown in the inset of Figstraints except those arbitrarily imposed by our cutoff
8(a). A grayscale plot of the forces on a representativegchemes.

sample lattice withu=0.2 and a sharp cutoff at 100 N is  Thjs pehavior is apparent in other implementations of

shown in Fig.' 9.1t i_s obviousg th_at the vertical and horizomallayer-by-layer models despite differing choices in parameter-
force fluctuations differ qualitatively. ization and configuration. Eloy and @hent[28] model the

Thus, although the imposition of force limits results in : . ;
; C ) acking by assuming a monodisperse 2D array of hard cyl-
horizontal force distributions that do not diverge as the depti%derS arranged in a triangular lattice. The angle of contact

Is increased, these limits serve only to mask the dIVergeq)etween cylinders in neighboring layers is fixed at slightly

behavior of the model: the distribution of forces expands t o : .
fill the space allowed and the distribution of horizontal forcegess than 60° measured with respect to the horizontal. The

exhibits a strong dependence on the choice of cutoff SChen{gdistribution of forces at a cylinder is parameterized by the
and value. coefficient of frictionu and the difference in value of the

horizontal force components transferred to the neighboring
sites in the row belowp. They clearly note that for certain
values ofu, valid values ofp are unreasonably large in mag-

The layer-by-layer vector model that we have investigated’itUde and an arbitrary cutoff, restricting the parameter space
to model forces in granular packings yields vertical and horito be far away from this divergent region, is imposed. Soco-
zontal force probability distributions that are of different lar's « model[29] represents the packing with a lattice of
functional forms and scales, in contrast with the recent measquare cells with net normal forces, couplésrques, and
surements by Muetit al. [21]. Moreover, while the distri- tangential forces represented on each edge. The redistribu-
bution of vertical forces is robust, the distribution of horizon- tion of forces at a cell is parametrized by a triplet of values
tal forces depends on the details of our implementation.  («g,@;,a,) that are used to couple the torque and force

The asymmetry seen in the force distributions is a reflechalance. The distribution of net forces at every site is re-
tion of the vertical-horizontal asymmetry inherent in any uni- stricted to be in a downward cone opening at 45° by consid-
directional layer-by-layer model. At the level of individual ering only frictional forces acting in conjunctiathe same
elements, we see that large-magnitude horizontal forces awdirection vertically with normal forces. This restriction
generated. As these forces accumulate, the resulting prolguarantees successful lattice generation but renders the force

V. DISCUSSION
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Without Feedback With Feedback vector force transmission in granular media requires a better
: understanding of the vectorial nature of force redistribution,
taking into account explicitly the symmetry properties of the
medium.
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FIG. 10. Schematic of feedback arising from a large honzontalversatlo S

force. The left-hand side shows the force propagation as imple-
mented in layer-by-layer models. The right-hand side demonstrates
how the force could be broken into upward- and downward-
traveling components.

APPENDIX A: PSEUDOFEEDBACK AND INCREASED
LATTICE YIELD

The generation of a sufficiently large set of lattices is
essential in performing any reasonable statistical analysis of
fluctuations anisotropic by construction—the magnitude ofthe force distribution in the model. In thg model, valid
the horizontal force components is artificially limited to lessredistribution of force at a site is guaranteed because the
than that of the vertical. We believe that widening the coneconstraints on the choices qfs are independent of the force
by including frictional forces in opposition to normal forces acting at a given site. In the vector model proposed here, as
would lead to the divergent behavior of horizontal forcewell as in[28] and[29], the set of random statistical vari-
components. ables allowed at a site is dependent on the force acting upon

Transmission of information regarding the production ofit, as can be seen by Eq&3) and (5) for calculating the
large-magnitude forces upwards into the already processasutput normal forces and checking the nontensile constraint,
portion of the lattice is a mechanism missing in layer-by-respectively. We choose to select the set of random statistical
layer models that could serve as a means of suppressingriables for a site, test to see if the constraints are met, and
large-magnitude forces. To illustrate this point, Fig. 10discard and reselect a new set of variables if the constraints
shows the breakup of a large horizontal force into upwardare not satisfied. Although seemingly inefficient, this method
and downward-traveling components. In addition to reducings far simpler than encapsulating the nontensile and friction
the magnitude of a single force that would have otherwiseconstraints within the choice of random variables. The lack
persisted, this process yields an upward force component thaf a guaranteed redistribution configuration is the root cause
may instigate a rearrangement which then causes a new ref the failure in lattice generation in the vector models we
distribution of forces in the layers above and allows the siteexamined.
generating the force to “relax” to a less stressful configura- We may reduce the rate of incidence of failure if we can
tion or generate a loop that isolates the force chain. One musisure that the inputs at the sites in the layer below that
consider some sort of feedback mechanism to enable correcurrently are being redistributed will be able to support valid
tive rearrangements and redistribution of forces to be maddorce redistributions themselves. We do this by incorporating
Implementation of a feedback mechanism within the contexa simple check in the selection process for the statistical
of a layer-by-layer method is not a trivial matter. While a variables¢, . and 7, for neighboring sites in the same
pseudofeedback mechanideee Appendix Ais used in the layer. If a valid redistribution is not possible, then all sites on
generation of the sets of lattices analyzed here and serves ttiee row are subjected to a new redistribution. We may extend
purpose of increasing the likelihood of finding an allowablethis process to an arbitrary number of resulting layers al-
configuration, it still maintains the downward propagation ofthough this may significantly increase the memory require-
actual force information. ments for computation in addition to complicating the layer-

Identification of redistribution rules that enable the gen-by-layer algorithm. The essence of this requirement is to
eration of more realistic force distributions would make sta-capture the flavor of feedback and rearrangement, albeit in an
tistical models an attractive alternative to molecular dynamimprecise manner. However, we have no guarantees that a
ics (MD) for gaining insight into the nature of valid configuration will be possible.
inhomogeneous forces in granular media. As configurations This pseudofeedbadlPFB) addition was set to a depth of
are generated without the need for a full-scale dynamicalwo layers in the process of generating the lattices used in
simulation, the advantage to such models is analogous to thgiis paper. Typically, most difficulties in redistribution may
obtained in statistical mechanics when one uses the ergodi® resolved with a one-layer PFB, as this provides an imme-
hypothesis[34]. However, the integration of results from diate check for input forces leading to a valid redistribution.
MD and experiment will be necessary to identify the rulesHowever, these valid redistributions may lead to an invalid
for vector forces that accurately reflect their behavior in reainput force on the next layer down, a less likely but still
granular materials. significant cause of failure. The implementation of a second

In summary, the intrinsic asymmetry of layer-by-layer layer for the PFB resolves this issue and allows for the vast
vector models results in asymmetries in force distributionsnajority of lattices for our configurations of friction and
that are not seen in experiment. This failure of the modeforce cutoff to run to completion. Using PFB beyond two
indicates that constructing a statistical characterization ofayers increases the yield, but not significantly.
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FIG. 11. Schematic of the four-site triangular lattice. External
vertical forces have been applied to each site. The configuration is FIG. 12. Schematic of the four-site quadrilateral lattice. External
made periodic by connecting sites 1 and 4 as shown. Indexing ofertical forces have been applied to each site. The configuration is
the contact angles and effective friction coefficients refer to the sitesnade periodic by connecting sites on the same vertical layer as
in contact(i.e., ¢35 is the contact angle between sites 1 andA> shown(site 1 to site 2, site 3 to site) 4Contact angles are measured
angles are measured with respect to the horizogigk ¢;; . by their deviation from a squarée., ¢4, is the deviation from the

horizontal,¢,3 is the deviation from the vertical, angl; = — ¢;;).
APPENDIX B: CONSIDERATIONS RELEVANT FOR
SYMMETRIC LATTICES: FOUR-SITE LATTICES the symmetry of the system, two angles and a single internal
griction coefficient are sufficient to specify the redistribution

We have examined exactly solvable lattice configuration f forces for the internal contacts. Assuming that the known
to study the interaction between force-balanced sites to gai : iming S
angles arep;3 and ¢,3 and the known friction coefficient is

insight into how large-magnitude forces may persist in the". T e

lattice and what methods beyond externally imposed forc&VeN by = 73, the normal forces for the periodic case are

limits exist to prevent or remove them. Although they do not _rin ;

offer any statistical information, these configuratio)rgs offer F15=F3 COSeaolsiNe13t ¢29

further insight into the nature of the generation and propaga- + uy[1+cod @15+ @291} L, (Bla)

tion of large magnitude horizontal forces by allowing greater

control over the parameters governing the forces in a packing . .

than is found in a stochastic layer-by-layer approach. F23=F1d COS@13~ (SN @13~ SN @23) |/COS@3, b
We find that four-site lattices represent the smallest mean- (B1b)

ingful unit of study. The two configurations that maintain the

coordination number four are the two-layer triangular lattice Fos=F14 COS@13— un(Sin g 13— SiN@,4) ]/COSEo4,

and the quadrilateral shown in Figs. 11 and 12, respectively. (Blo

We examine both horizontally periodic and fixed-wall cases.

_ F14=F1dCOSp13— u7n(Sin@13—SiN@14)]/COSP14,
1. Two-layer triangular lattice (B1d)

Placing the sites in the familiar triangular lattice shown in
Fig. 11, vertical forces are applied to each site. Because ofthere ¢, and ¢,, are defined implicitly by

F_i;: COS@AA SIN( @13+ ¢©23) + [ 1+ COL @13+ ¢©23) 1} (B2a)
i2” . SiN( @23t ¢24)
COS@13SIN( @231 ¢24) + 7] COSPo 1+ COL @23t ¢24) | — Py ry— -
F_iln _ COS@a3(Sin( @13t @19 + up[1+COL @13+ ¢14) ]} (B2b)

Fin coseia{Sin(@1gt ¢29) + w1+ o @13t @291}

Assuming uniform vertical inputs, the periodic case ad- The fixed horizontal boundaries case is derived by discon-
mits solutions near the single-sitt=0 boundary with the necting sites 1 and 4 and fixing the direction of the normal
balancing of external forces remaining perfectly satisfiedorces to be normal to the wall. As the magnitude of the sum
while the magnitudes of the internal normal and frictionalof the horizontal components of each normal and frictional
forces grow unbounded. A similar result exists in the non-force for each contact must be equal, any restriction placed at
uniform case once external force and torque balance is takethe wall (i.e., loading will place limits on the internal redis-
into account. tribution. By removing the asymmetry of loading in this con-
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figuration, we can prevent the formation of the large magniinputs of sites on the same vertical “level” so that they are
tude forces. However, we must be able to specify all theequal in magnitude and have friction coefficients acting on
forces along the boundary of the system. If we are only givereach site of the pair equally and oppositely. Although the
the vertical loading, then any restrictions placed on the horiequations of force balance for the system are easily derived,
zontal force component will be arbitrary. valid configurations are more readily determined numeri-
This result may indicate that successful implementation ota|ly. Unbounded horizontal force solutions are supported—

probabilistic vector models of force fluctuations requires betyne redistribution pair consists of the periodic horizontal and
ter understanding of the role of the boundaries. This questiofhe jnternal force connecting same-level sites. The internal

is also crucial to understanding whether the equations undefzq, prevents these forces from being passed between verti-
lying these force distributions are elliptic or hyperbdli@]. 5" jevels due to the direction of the tangential frictional

2. Quadrilateral lattice forces within the loop being prevented from aligning ad-

The quadrilateral configuration shown in Fig. 12 offers VerSely in neighboring loop sites. ,
the advantage of having a “rotational” symmetry lacking in  The addition of fixed horizontal boundaries leads to re-
both the single-site and triangular lattice configurations. weSults similar to the triangular lattice configuration. We see
have implemented an explicit loop to observe its effect orfhat the introduction of internal symmetry to the system is
the internal force redistributions and obtain insight into thenot enough—we are still subject to the effects of an exter-
role of this symmetry in the system. nally imposed asymmetry. However, we do gain the ability

We apply vertical external forces to each site. Periodido isolate the effects, in this case over a layer, as opposed to
boundary conditions are created by pairing the horizontaits propagation throughout the system.
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